40 research outputs found

    Sablefish, Anoplopoma fimbria, Populations on Gulf of Alaska Seamounts

    Get PDF
    Sablefish, Anoplopoma fimbria, were tagged and released on Gulf of Alaska seamounts during 1999–2002 to determine the extent, if any, of emigration from the seamounts back to the continental slope and of movement between seamounts. Seventeen sablefish from Gulf of Alaska seamounts have been recovered on the continental slope since tagging began, verifying that seamount to slope migration occurs. Forty-two sablefish were recovered on the same seamounts where they were tagged, and none have been recaptured on seamounts other than the ones where they were released. Sablefish populations on Gulf of Alaska seamounts are made up of individuals mostly older than 5 years and are maledominant, with sex ratios varying from 4:1 up to 10:1 males to females. Males are smaller than females, but the average age of males is greater than that of females, and males have a greater range of age (4–64 yr) than females (4–48 yr). Otoliths of seamount fish frequently have an area of highly compressed annuli, known as the transition zone, where growth has suddenly and greatly slowed or even stopped. Because transition zones can be present in both younger and older seamount fish and are rare in slope fish, formation of otolith transition zones may be related to travel to the seamounts. The route sablefish use to reach the seamounts is so far unknown. One possibility is that fish enter the eastward-flowing North Pacific Current off the Aleutian Islands or western Gulf of Alaska and travel more or less passively on the current until encountering a seamount. The route from seamount back to slope would likely be the northwardflowing Alaska Current. These routes are discussed in light of tag recovery locations of slope- and seamount-tagged fish

    A Pilot Study of Neuroplasticity Based Cognitive Remediation in Early Onset Psychosis

    Get PDF
    Introduction – Neuroplasticity based auditory and visual training programs appear to improve neurocognitive function in adults with schizophrenia, but use in younger individuals has not been determined. We hypothesized that adolescents might play more often and respond better than adults to training using a game-like laptop in their home environment. Methods -- Youth 10-19 years with Early Onset Psychosis (EOP) were provided a laptop and randomly assigned to play games to enhance basic auditory, visual and social processing neuroplasticity games (NPG) or assigned to control games with cognitive components, such as Sudoku or hangman or (CG). All received neurocognitive assessments at baseline, intervention completion and 4 months post treatment. Results — 12 youth (15.5 +3.2 yrs) were assigned to NPG and 10 participants (16.2 +2.1 years) were assigned to CG. More NPG than CG participants completed the prescribed hours of game play (block 1 - 92% vs. 70% over the first 40 hours), with both groups engaged less over time. Although most neurocognitive functions did not change, the NPG group did show improvements in WRAML Visual Learning, WISC Digit Span Forward, Spatial Span Backwards and CPT omission errors. Surprisingly, satisfaction was lower for NPG than CG. Conclusions — Groups were well matched for baseline illness characteristics. On the global measures of cognition, both EOP groups showed improvement over time but those improvements were generally greater in the CG than in the NPG group, with potentially significant differences favoring the CG evident in the neurocognitive composite score (p=0.072) and BRIEF metacognition (p=.117). Youth did not play as frequently or as long as requested despite providing a laptop for their home use and stipends for playing

    Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience

    Get PDF
    Rituximab is a human/murine, chimeric anti-CD20 monoclonal antibody with established efficacy, and a favorable and well-defined safety profile in patients with various CD20-expressing lymphoid malignancies, including indolent and aggressive forms of B-cell non-Hodgkin lymphoma. Since its first approval 20 years ago, intravenously administered rituximab has revolutionized the treatment of B-cell malignancies and has become a standard component of care for follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma. For all of these diseases, clinical trials have demonstrated that rituximab not only prolongs the time to disease progression but also extends overall survival. Efficacy benefits have also been shown in patients with marginal zone lymphoma and in more aggressive diseases such as Burkitt lymphoma. Although the proven clinical efficacy and success of rituximab has led to the development of other anti-CD20 monoclonal antibodies in recent years (e.g., obinutuzumab, ofatumumab, veltuzumab, and ocrelizumab), rituximab is likely to maintain a position within the therapeutic armamentarium because it is well established with a long history of successful clinical use. Furthermore, a subcutaneous formulation of the drug has been approved both in the EU and in the USA for the treatment of B-cell malignancies. Using the wealth of data published on rituximab during the last two decades, we review the preclinical development of rituximab and the clinical experience gained in the treatment of hematologic B-cell malignancies, with a focus on the well-established intravenous route of administration. This article is a companion paper to A. Davies, et al., which is also published in this issue

    Representation of Time-Varying Stimuli by a Network Exhibiting Oscillations on a Faster Time Scale

    Get PDF
    Sensory processing is associated with gamma frequency oscillations (30–80 Hz) in sensory cortices. This raises the question whether gamma oscillations can be directly involved in the representation of time-varying stimuli, including stimuli whose time scale is longer than a gamma cycle. We are interested in the ability of the system to reliably distinguish different stimuli while being robust to stimulus variations such as uniform time-warp. We address this issue with a dynamical model of spiking neurons and study the response to an asymmetric sawtooth input current over a range of shape parameters. These parameters describe how fast the input current rises and falls in time. Our network consists of inhibitory and excitatory populations that are sufficient for generating oscillations in the gamma range. The oscillations period is about one-third of the stimulus duration. Embedded in this network is a subpopulation of excitatory cells that respond to the sawtooth stimulus and a subpopulation of cells that respond to an onset cue. The intrinsic gamma oscillations generate a temporally sparse code for the external stimuli. In this code, an excitatory cell may fire a single spike during a gamma cycle, depending on its tuning properties and on the temporal structure of the specific input; the identity of the stimulus is coded by the list of excitatory cells that fire during each cycle. We quantify the properties of this representation in a series of simulations and show that the sparseness of the code makes it robust to uniform warping of the time scale. We find that resetting of the oscillation phase at stimulus onset is important for a reliable representation of the stimulus and that there is a tradeoff between the resolution of the neural representation of the stimulus and robustness to time-warp. Author Summary Sensory processing of time-varying stimuli, such as speech, is associated with high-frequency oscillatory cortical activity, the functional significance of which is still unknown. One possibility is that the oscillations are part of a stimulus-encoding mechanism. Here, we investigate a computational model of such a mechanism, a spiking neuronal network whose intrinsic oscillations interact with external input (waveforms simulating short speech segments in a single acoustic frequency band) to encode stimuli that extend over a time interval longer than the oscillation's period. The network implements a temporally sparse encoding, whose robustness to time warping and neuronal noise we quantify. To our knowledge, this study is the first to demonstrate that a biophysically plausible model of oscillations occurring in the processing of auditory input may generate a representation of signals that span multiple oscillation cycles.National Science Foundation (DMS-0211505); Burroughs Wellcome Fund; U.S. Air Force Office of Scientific Researc

    Role of mprF1 and mprF2 in the Pathogenicity of Enterococcus faecalis

    Get PDF
    Aujourd hui, Enterococcus faecalis est considéré comme l un des plus importants agents pathogènes causant des maladies nosocomiales. En raison de sa résistance innée et acquise aux antibiotiques, l identification de nouvelles cibles pour le traitement de cette bactérie est une grande priorité. Le facteur Multiple Peptide Résistance (MprF), qui a été décrit en premier chez Staphylococcus aureus, modifie le phosphatidylglycérol avec de la lysine et réduit ainsi la charge négative de l enveloppe cellulaire. Ceci a comme conséquence d augmenter la résistance aux peptides antimicrobiens cationiques (PAC). Deux gènes paralogues putatifs (mprF1 et mprF2) ont été identifiés chez E. faecalis par recherche BLAST en utilisant le gène décrit chez S. aureus. Une caractérisation de ces deux gènes d E. faecalis ainsi que des mécanismes conduisant à une résistance aux PAC, pourrait aider à développer des nouvelles stratégies thérapeutiques contre ce pathogène. Deux mutants de délétion et un double mutant ont été construits par recombinaison homologue chez E. faecalis. L analyse des phospholipides des membranes cytoplasmiques des deux mutants mprF1 et mprF2 par chromatographie sur couche mince a montré que seule l inactivation de mprF2 inhibe la synthèse de trois amino-phosphatidlyglycérol distincts (comme la Lysine-PG, l Alanine-PG et l Arginine-PG). De plus, le mutant mprF2 est également plus sensible aux PAC que la souche sauvage. La capacité de formation d un biofilm est généralement considérée comme un facteur important de virulence, ce qui est également le cas pour les entérocoques. Le mutant mprF2 montre une capacité accrue dans ce phénomène. Ceci semble être du à une augmentation de la concentration d ADN extracellulaire dans le biofilm formé par ce mutant. Curieusement, cette augmentation est indépendante d une autolyse. Le mutant mprF2 est également plus résistant à l opsonophagocytose. Cependant, le gène mprF2 ne joue aucun rôle dans les bactériémies de souris et les endocardites de rats.En revanche, aucun phénotype n a été trouvé pour un mutant mprF1 jusqu à présent. Cette mutation ne modifie ni la synthèse de l aminoacyl-PG en condition de laboratoire ni la résistance aux PAC et à l opsonophagocytose. Par conséquent, il semble que mprF2 soit le seul gène mprF fonctionnel chez E. faecalis. Néanmoins, contrairement à d autres bactéries, mprF2 ne semble pas être un facteur de virulence majeur pour cette espèce.Enterococcus faecalis is regarded nowadays as one of the most important nosocomial pathogens. Due to its innate and acquired resistance to antibiotics, identification of new targets for antimicrobial treatment of E. faecalis is a high priority. The multiple peptides resistance factor (MprF), which was first described in Staphylococcus aureus, modifies phosphatidylglycerol with lysine and reduces the negative charge of the membrane, thus increasing resistance to cationic antimicrobial peptides (CAMPs). Two putative mprF paralogs (mprF1 and mprF2) were identified in E. faecalis by Blast search using the well-described S. aureus gene as a lead. A better understanding of these two genes and mechanisms leads to enterococcal resistance to CAMPs might help designing therapeutic strategies against this bacteria. Two single deletion mutants and double mutant in E. faecalis were created by homologues recombination. Analysis of cell membrane phospholipids from both mutants by thin-layer chromatography showed that inactivation of mprF2 abolished the synthesis of three distinct amino-phosphatidylglycerol (mostly likely Lysin-PG, Alanine-PG and Argine-PG). The CAMPs testing assay demonstrated that the deletion mutant of mprF2 was more susceptible to CAMPs than the wild type. Biofilm formation is usually regarded as a virulence factor which provides an important way for enterococci to cause infections. Inactivation of mprF2 led to increase the biofilm formation which we showed that it was due to the accumulation of eDNA in the biofilm, but the release of eDNA is independent from autolysis. The mprF2 mutant was resistance to killing by opsonophagocytosis more than wild type. However, the mprF2 gene plays no role in bacteremia in mice and rat endocarditis. Our results showed that non polar effect mprF1 mutant does not affect in the synthesis of aminoacyl-PG in the laboratory condition. It also has no effect on susceptible to CAMPs, opsonic killing and autolysis. Therefore, it seems that mprF2 is the only functional mprF gene in E. faecalis in the laboratory condition. Unlike mprF found in other bacteria, mprF does not seem to be a major virulence factor in enterococci.CAEN-BU Sciences et STAPS (141182103) / SudocSudocFranceF

    Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes

    Get PDF
    Penetrance of variants in monogenic disease and clinical utility of common polygenic variation has not been well explored on a large-scale. Here, the authors use exome sequencing data from 77,184 individuals to generate penetrance estimates and assess the utility of polygenic variation in risk prediction of monogenic variants

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    corecore